И.И.Клюкин. Удивительный мир звука.


процесс
прохождения
звука
через
различные ограждения и научиться
по
возможности
препятствовать этому процессу.
Интуитивно
можно
было предполагать, что в
явлении изоляции, то
есть
"непропускания", звука
значительную
роль
играет масса
любой строительной
конструкции -- стенки, пола и т. п. А. Шох дал этому строгое доказательство.
Но
одно
дело физические величины--
звуковое
давление,
звуковая энергия,
проходящие через
стенку, и
совсем
другое
дело
-- имеющий при этом место
физиологический эффект, т.е. снижение ощущения громкости шума за стенкой. Во
второй
части
книги
физиологической
акустике
будет
уделено
достаточное
внимание, здесь же мы отметим лишь, что при учете снижения громкости
шума в
дело неизбежно вмешивается логарифмический закон.
А этот
закон
в вопросах
звукоизоляции ведет к
довольно серьезным последствиям с точки зрения
массы
конструкций.
Пусть
имеется весьма легкая
звукоизолирующая стенка (скажем, масса ее
на единицу площади не превышает
1 килограмма на квадратный
метр), и мы,
с
целью увеличения звукоизоляции, заменим ее
вдесятеро более тяжелой стенкой,
т. е. с удельной массой 10
килограммов на квадратный метр.
Громкость
шума
какого-либо акустического источника, находящегося
за стенкой, уменьшится
в
определенное число раз (не приводя объяснений, которые нас завели бы далеко,
укажем, что эта громкость уменьшится не более чем в 3--4 раза). Но вот беда,
оказалось,
что
это
уменьшение громкости недостаточно и надо уменьшить ее,
скажем,
еще во столько же раз. Потребуется, следуя логарифмическому закону,
увеличить
массу стенки
опять в 10
раз, т. е. с
10 до 100 килограммов
на
квадратный метр.
"Закон массы" в действии: каждое увеличение массы стенки
в три раза уменьшает громкость проходящего через стенку шума
приблизительно в два раза.
Неумолимый
акустический "закон
массы" оборачивается для строителей
и
эксплуатационников довольно неприятными последствиями.
Слабым утешением
является
то,
что теперь мы
уже
можем ответить
на
вопрос, поставленный в заголовке. Лист железа все же. тяжелее ватного одеяла
той же площади, и этот лист с точки зрения звукоизоляции следует предпочесть
одеялу. Впрочем,
дело не только в массе, но и в
том,
что
для обеспечения
звукоизоляции материал должен быть
не рыхлым, а плотным, без пор
и пустот,
проводящих звук, как это имеет место в том же слое ваты.
Впрочем,
следует
ли
полностью
отвергать
одеяло?
Звукоизолирующий
материал
отбрасывает звуковую энергию обратно, и
если ее не
поглотить, то
неизбежно
увеличение
звукового
уровня
в
помещении
источника,
а
следовательно,
и
в
самом
изолируемом
помещении.
Оптимальным
является
сочетание
звукоизолирующей конструкции со звукопоглощающей. Так собственно,
и осуществляют
звукоизолирующие
кожухи
и капоты для
шумящих
механизмов:
стальные
стенки с нанесенными изнутри на них слоями рыхлых волокнистых
или
пористых материалов.
Итак, можно сказать: "звукоизоляция любит массу". Но...
Едва
лишь
строительные
и
архитектурные
акустики
начали
понемногу
привыкать к
неумолимому "закону массы",
как на сцене появился
незнакомец,
который
более
чем что-либо
другое
(кроме
сквозных
отверстий)
ухудшает
звукоизоляцию
стенок
в
области
максимальной
чувствительности
слуха.
Разумеется,
это
не
живое существо, а
процесс.
Но
прежде
-- два
слова
истории.
Еще в 1941 году
С. Н. Ржевкин
с одним из своих
сотрудников наблюдали
аномальное
-
прохождение звука через
пластинки.
При
некоторых
частотах
колебаний
и
углах
падения
звуковой
волны
на
пластинку
наблюдалось
интенсивное
прохождение
через
нее
звука. Удовлетворительного
объяснения
этому явлению подыскать тогда не удалось.
Несколько ..далее 




Все страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

 

[В начало]
[Основное содержание]   [Содержание раздела

Hosted by uCoz